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The salient feature of one-cell-thick epithelia is their en face view, which reveals the polygonal cross section
of the close-packed prismatic cells. The physical mechanisms that shape these tissues were hitherto explored
using theories based on cell proliferation, which were either entirely topological or included certain morpho-
genetic forces. But mitosis itself may not be instrumental in molding the tissue. We show that the structure of
simple epithelia can be explained by an equilibrium model where energy-degenerate polygons in an entropy-
maximizing tiling are described by a single geometric parameter encoding their inflatedness. The two types of
tilings found numerically—ordered and disordered—closely reproduce the patterns observed in Drosophila,
Hydra, and Xenopus and they generalize earlier theoretical results. Free of a specific cell self-energy, cell-cell
interaction, and cell division kinetics, our model provides an insight into the universality of living and inani-
mate two-dimensional cellular structures.
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I. INTRODUCTION

Across many length scales, the forms of life are full of
similar spatial patterns apparently produced by a rather ge-
neric set of morphogenetic processes. Although not new �1�,
the view that the universality of these processes may be re-
lated to the physical forces that materialize them—cell sur-
face tension �2�, cell adhesion �3�, cortex contractility �4�,
etc.—is increasingly more appreciated �5–7�. With the pro-
gressing complexity of biomechanical theories of animal
morphogenesis �3,4,8,9�, we may soon face the question of
identifying their key ingredients. In fact, this issue has al-
ready arisen in simple epithelia whose structure has been
interpreted in terms of models of cell proliferation with mi-
totic dynamics that are either purely topological �10� or in-
clude cell elasticity and junctional forces �11�. The broader
range of structures predicted by the latter more elaborate
theory suggests that cell division itself may be subdominant,
which reopens the problem of the origin of epithelial geom-
etry.

The epithelium is a layered lining of organs and body
cavities. The structure of its simplest one-cell-thick variant is
described by the en face view showing the bases of the pris-
matic cells, which look like a polygonal tiling of a plane
�Fig. 1�a�� �11–14�. In some cases the tiling is ordered, con-
sisting predominantly of hexagons �12�, and in others it is
disordered and includes a distribution of polygon classes
�13�. Either way, the structure of epithelia is essential for
their function. In the Drosophila wing epithelium, it under-
lies the hexagonal packing of hairs, which direct the airflow
�15�; however, the proliferating epithelium is disordered until
the final stages of its growth when it transforms into the
ordered pattern �12�. On the other hand, the Drosophila ger-
mband epithelium experiences the transition without cell di-
vision and in the opposite direction, which is instrumental
for its elongation and the ensuing establishment of the head-
to-tail body axis �13�.

The bidirectionality of the structural transition in develop-
ing epithelia—some are initially hexagonal and evolve into a

disordered pattern whereas others undergo the disordered-
hexagonal transition—supports the assertion that cell prolif-
eration may not be an essential element of epithelial morpho-
genesis. Moreover, in some animals certain stages of the
process depend on programmed cell death �16�. In addition,
during the transition cell walls “grow and shrink” �12�,
which leads to rearrangement of neighbors suggesting that
the tiling explores many possible configurations in a series of
quasiequilibrium states.

Based on these facts, we propose an equilibrium model of
polygonal tilings to explain the structure of simple columnar
epithelia. We focus on assemblies of elongated cells whose
energy does not depend on their shape and whose basic mor-
phometric features are well defined. We study the entropy-
maximizing structure of the model tissue by numerically ex-
ploring all possible cell arrangements and we identify two
distinct phases, which are both observed in epithelia and
other layered cell aggregates. With its unspecific packing na-
ture, our model may help to elucidate the origin of certain
patterns shared by many animal tissues and species.

FIG. 1. The structure of simple epithelium �a� consisting of a
single layer of elongated prismatic cells �SEM of mucosal epithe-
lium in rat small intestine; image courtesy of Dr. Roger Wagner,
University of Delaware� is uniquely described by their bases that
form a polygonal tiling partly outlined at the apical surface. The
shape of cells �b� is a prism with a base of area A and perimeter L.
In our model, A and L are assumed to be fixed and identical in all
cells described by base reduced area a=4�A /L2.
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II. MODEL AND RESULTS

A. Energy-degenerate cell shapes

For simplicity, we restrict the discussion to single-layer
epithelia consisting of prismatic cells that have the same and
invariable height, volume, and membrane area. In this case,
the areas and the perimeters of cell polygonal bases are also
fixed and identical in each cell. Base area A and perimeter L
�Fig. 1�b�� can be conveniently combined into the so-called
reduced area �sometimes called the shape factor �17��

a =
4�A

L2 , �1�

a geometric parameter that measures the inflatedness of the
base contour. For isolated contours, the largest possible value
of a is 1 which describes a circle, whereas in a tiling of
polygons of identical areas and perimeters it cannot exceed
0.907; this corresponds to regular hexagons.

As the intralayer cell-cell adhesion between epithelial
cells is very strong, an immediate consequence of the fixed
cell base perimeter is that the energy of cells does not depend
on the shape of the base. This remarkable property has been
emphasized in the analysis of the epithelial theory based on
cortex elasticity �11� but is also characteristic of a model
built upon the bending elasticity of the lipid bilayer mem-
brane. In elongated prismatic cells �Fig. 1�a�� both bending
and adhesion energy are dominated by the contributions of
the lateral faces. The bending energy of each cell is given by
Wb= �Kh /2��C2�s�ds, where K is the bending constant �18�
and h is cell height; the integral runs along the base contour,
a planar loop of fixed length L, and C�s� is the local curva-
ture of the contour. The adhesion energy per cell is propor-
tional to the total length of contact sections of the base con-
tour, Wa=−��h /2��i�contactdsi, where � is the adhesion
strength. At large values of �, one can assume that the con-
tact sections are straight and that the noncontact sections are
circular arcs of radius R whose value must be �K /� �19�;
furthermore, observations suggest that the base is convex
�12,13�. Then the total energy of a cell is

W = 	�K

R
−

�

2
�L − 2�R�
h �2�

irrespective of all attributes of the shape of the base—
number of vertices, internal angles, and relative lengths of
contact sections—so that all cells of identical and fixed base
perimeter L are energy degenerate �20�.

B. Theoretical tilings

Because the energy of cells is insensitive to their shape,
the cross section of the model single-layer tissue includes a
multitude of local packings of polygonal contours. We ex-
plored these polygonal assemblies using Monte-Carlo-type
numerical simulations implemented within the SURFACE

EVOLVER package �21�, which proved very suitable for an
efficient bookkeeping of the large number of geometric prop-
erties of the system �polygon perimeters and areas�. Starting
from an ordered tiling consisting of identical flattened equi-
lateral hexagonal tiles of a given reduced area, we applied a

set of transformations including random edge length change
and neighbor-swapping topological T1 process �22� to find
the equilibrium structure. Each transformation was followed
by a relaxation of the system to fulfill the perimeter, area,
and convexity constraints; through relaxation, any single
transformation affects the tiling globally. We used periodic
boundary conditions in a rectangle with typically 400 poly-
gons, which is a large enough sample to avoid finite-size
effects. A few 1000 steps �each step being either a random
edge length change or a T1 transformation�, which usually
included about 1000 T1 transformations, were sufficient to
equilibrate the tiling so that the relevant structural and
statistical-mechanical ensemble averages did not change
anymore �Fig. 2�. The data presented were collected during
3000–5000 averaging steps.

Snapshots of thus obtained equilibrium tilings at polygon
reduced areas from a=0.74 to a=0.9 shown in Fig. 3 dem-
onstrate that depending on the value of a, the system is either
ordered or disordered. For a�0.865, the tiling is composed
exclusively of hexagons and we refer to this perfectly sixfold
coordinated phase as the ordered phase. For values of a be-
tween 0.785 and 0.865, it consists of pentagons, hexagons,
heptagons, and very few octagons. At a�0.85, pentagons
and heptagons often appear in diamond-shape quadruplets
produced by a single T1 edge swap on a tiling of hexagons,
each quadruplet consisting of two pentagons and two hepta-
gons. As a is decreased, the frequency of the nonhexagonal
tiles increases at the expense of the hexagons. Finally, for
a�0.785 the tiling is a strongly disordered mixture of poly-
gons with four to nine vertices and the composition of the
mixture barely depends on the reduced area across a broad
range. The onset of this robust disordered structure is sig-
naled by the appearance of quadrilaterals and the drop of
frequency of pentagons and hexagons. By robust disordered
phase we denote the regime where the frequencies of poly-
gon classes are insensitive to the reduced area a. We note
that the order-disorder transition and the onset of the robust
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FIG. 2. �Color online� Typical evolution of the equilibrium
structure of the tiling during a simulation run: the initially regular
tiling consisting exclusively of hexagons with identical reduced ar-
eas a is equilibrated after a few 1000 Monte Carlo steps including a
random edge length change or a T1 transformation. Upon equilibra-
tion, the frequency of hexagons decreases and the frequencies of the
other polygon classes gradually increase. The data shown here cor-
respond to an a=0.70 tiling �containing 400 polygons� whose equi-
librium structure is disordered and includes four-, five-, six-, seven-,
eight-, and nine-sided tiles.
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disordered phase occur at the largest reduced area that can be
enclosed by a pentagon �a=0.865� and a quadrilateral �a
=0.785�, respectively.

The composition of the tiling in terms of frequencies of
polygon classes is shown in Fig. 4, which quantifies the
above classification of tilings. It also emphasizes the robust-
ness of the disordered phase for a�0.785 where the average
frequencies of four-, five-, six-, seven-, eight-, and nine-sided
polygons are 5%, 26%, 40%, 23%, 5%, and 1%, respec-
tively; error bar magnitude is below 2%. In all tilings we
explored, triangles and polygons with ten or more vertices
were absent. Given that the largest reduced area that can be
enclosed by a triangle is 0.605, we expect that they be
present in tilings at a�0.605 albeit not in large numbers.

III. DISCUSSION

A. Comparison with experiments and earlier theories

These results extend the predictions of the two-parameter
theory based on proliferation of adhering cells with a pre-
ferred cross-section area and a cortex elasticity �11�, which
gives the disordered phase and the regular crystalline version
of the hexagonal phase. This theory is characterized by a
rather straightforward phase diagram spanned by the cortex

contractility c and line tension t, which describe the forces
resulting from actin-myosin contractility and cell-cell inter-
actions, respectively �11�. In the diagram the two phases are
separated by a linear boundary described within a few per-
cent by c�−0.133t /�A�0� �Fig. 5; A�0� is the preferred poly-
gon area�, which implies that the structure of the tiling may
depend on the ratio of c and t rather than on c and t them-
selves. Indeed, for t�0 the interplay of cortex elasticity and
adhesion results in a preferred polygon perimeter L�0� equal
to −t /2c such that any deviation of the perimeter from L�0�

carries an energetic penalty �11�; this is a soft version of the
fixed-perimeter constraint used in our model. Given that the
theory of Ref. �11� also includes an energy term favoring a
certain polygon area A�0�, a more negative value of t /c cor-

a = 0.74 a = 0.78 a = 0.82 a = 0.86 a = 0.90

FIG. 3. �Color online� Representative snapshots of equilibrium theoretical tilings at polygon reduced areas a=0.74, 0.78, 0.82, 0.86, and
0.90. For values of polygon reduced area a smaller than 0.785 the tiling is disordered and includes four-, five-, six-, seven-, eight-, and
nine-sided tiles whose frequencies barely depend on a; each polygon class is encoded by color or a shade of gray. Beyond a=0.785, the
frequency of hexagons increases with a at the expense of the nonhexagonal polygons. At a=0.865 the order-disorder transition takes place;
for a�0.865 all polygons in the tiling are perfectly sixfold coordinated.
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FIG. 4. �Color online� Frequencies of polygon classes as a func-
tion of reduced area: the order-disorder transition at a=0.865 is
marked by a dramatic change in the frequencies of five-, six-, and
seven-sided polygons, whereas the discontinuity of the frequencies
of quadrilaterals, pentagons, hexagons, and heptagons at the onset
of the robust disordered phase at a=0.785 is less pronounced.
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FIG. 5. Theoretical phase diagram of proliferating adhering con-
tractile cells �adapted from Fig. 1 in Ref. �11��: depending on the
effective line tension t and contractility c, the tissue can be either
disordered or ordered. In the plane spanned by the normalized line
tension t̄= t /��A�0��3/2 and contractility c̄=c /�A�0� �here � denotes
the elastic coefficient and A�0� is the preferred cell area�, the order-
disorder transition is described by a linear function of negative
slope �dashed line�. For negative values of t̄ shown here, this model
is mechanically very similar to ours except for the cell division.
Each of the superimposed solid straight lines through the origin
connects points in the �c̄ , t̄� plane that have identical values of the
preferred cell reduced area a=const and thus identical structure; the
lines are labeled by the value of a that they represent. The order-
disorder transition takes place at a fixed value of a�0.89 very close
to our value of a=0.865 �which virtually overlaps with the dashed
line�.
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responds to a smaller preferred reduced area a�0�

=4�A�0� / �L�0��2. By combining the three parameters of this
theory, we find that all along the linear boundary of the hex-
agonal phase the preferred polygon reduced area is a�0�

�0.89 �Fig. 5�, which is in excellent agreement with our
hexagonal-disordered transition located at a=0.865. Thus we
have mapped the negative-t part of the theory of Ref. �11�
onto our model and we expect that the same can be done for
any related theoretical framework characterized by an effec-
tive reduced area of cell cross section.

Experimental studies of epithelial geometry usually focus
on the frequencies of polygon classes, the most comprehen-
sive data sets available being those of various epithelia in
Drosophila, Hydra, and Xenopus �10–13�. The phases pre-
dicted by our model agree very well with this diverse body
of experimental data and generalize the results of earlier
theories �10,11�. In particular, the a=0.863 disordered phase
fits nicely with stage 6 of the Drosophila germband �13� and
the a=0.75 robust disordered phase reproduces the germ-
band at late stage 8 �Figs. 6�a� and 6�b��. We have also ana-
lyzed the distribution of polygon reduced areas in the germ-
band �Figs. 6�c� and 6�d��. Although the areas and perimeters
of cells in the germband are hardly monodisperse, which can
be seen in the micrographs in Figs. 1a and 1b in Ref. �13�,
the distributions of the reduced area are surprisingly narrow.
The average reduced areas at stage 6 and at late stage 8 are
�a
=0.87 and 0.78, respectively. These values are very close
to the reduced areas of our theoretical tilings that fit the
germband data best. Thus it seems that as long as the reduced
area of a tiling is well defined, polydispersities of polygon

areas and perimeters barely affect the topological structure of
the tiling reflected in the frequencies of polygon classes. We
note that the dispersion of the distribution of polygon re-
duced areas is larger in the more disordered tiling; it appears
that in real tilings, there exists a negative correlation between
the dispersion and the average value of polygon reduced
area.

Further support for our model is found in the skewed
polygon distributions in Drosophila wing disk as well as in
Hydra epidermis and Xenopus tail epidermis �10�, which are
very similar to each other �10� �Fig. 7�. The structure of these
tissues agrees well with the single set of polygon frequencies
predicted by the purely topological theory of cell prolifera-
tion �10� although the latter is devoid of quadrilaterals,
which constitute about 3% of all polygons in the tissues in
question. For a�0.79, our model produces a distribution of
polygon classes nearly identical to that of the theory pro-
posed in Ref. �10�, thereby providing an equally viable ex-
planation of the experimental data. In addition, our a=0.75
tiling �also shown in Fig. 7� reproduces the observed fre-
quencies of quadrilaterals much better although the agree-
ment of the frequencies of other polygon classes is a bit
worse.

Ample insight into the continuity of the order-disorder
transition in polygonal tilings is provided by a study of the
Drosophila wing epithelium �12�, which includes a sequence
of patterns consisting exclusively of pentagons, hexagons,
and heptagons. Yet the observed tilings are quantitatively
less consistent with ours, primarily because of the large fre-
quency of pentagons. It is likely that better agreement can be
achieved with a refined version of our model which would
include a certain area and perimeter polydispersity character-
istic of real tissues. We can conclude that the predictions of
the proposed equilibrium model compare with experiments
at least as well as those of the two earlier theories, which rely
on cell division �10,11�. In our view, cell proliferation is of
secondary importance for the structure of epithelia: the dy-
namics associated with cell division merely provides a way
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FIG. 6. �Color online� Frequencies of polygon classes in the
Drosophila embryo germband at stage 6 �a� and late stage 8 �b�:
experimental data �open columns, data from Ref. �13�� agree very
well with our theoretical predictions for a=0.853 and a=0.75, re-
spectively �solid columns�. From the experimental data �Figs. 2b
and 2c in Ref. �13�� we also extracted the distribution of polygon
reduced area in the germband shown in panels �c� and �d�. The two
distributions peak at the average value of �a
=0.87 and �a
=0.78,
respectively. Although somewhat larger, these values are quite con-
sistent with the two reduced areas of our best-fit monodisperse til-
ings. The dispersion of the distribution ��a� at stage 8 is larger than
at stage 6. The bin size used here is �a=0.33.
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FIG. 7. �Color online� Structure of Drosophila wing disk, Hydra
tail epidermis, and Xenopus epidermis in terms of frequencies of
polygon classes �data from Ref. �10��. The three sets of experimen-
tal data agree nicely with the theory proposed in Ref. �10�. How-
ever, they are equally well described by our a=0.79 tiling with the
polygon class frequencies virtually identical to that of Ref. �10�.
The a=0.75 tiling reproduces the observed frequency of quadrilat-
erals better.
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to sample the possible states of the tissue which, if unbiased,
leads to the entropy-maximizing configuration.

B. Tile-tile correlations

We also looked into structural features other than polygon
frequencies. A well-established general empirical relation-
ship describing two-polygon correlations known as the
Aboav-Weaire law �22� says that in disordered cellular sys-
tems the average sum of the number of sides of nearest
neighbors of an n-sided polygon, nm�n�, is a linear function
of n:

nm�n� = �6 − f�n + 6f + �2, �3�

where f �1 and �2=�n�n− �n
�2Pn is the second moment of
the distribution of polygon classes Pn; �n
 is the average
number of vertices of polygons in the tiling. We computed
nm�n� of the strongly disordered tilings and found that the
Aboav-Weaire law is obeyed perfectly at all values of a. In
the strongly disordered phase, f �1.1 and �2�0.95 almost
irrespective of a. These rather small values of f and �2 re-
flect the considerable regularity of our tilings where all poly-
gons have identical areas and perimeters; the fixed-area and
fixed-perimeter constraints apparently disfavor tilings with a
broad distribution of polygon classes. As tile reduced area is
increased beyond the onset of the robust disordered phase, f
and �2 gradually decrease and in the hexagonal phase with
perfect sixfold coordination, they both vanish.

Another type of correlations studied were those character-
istic of liquid-crystalline order. As the polygons assume an
increasingly more elongated shape as a is decreased, one
would expect that at small enough reduced areas the nearby
polygons be aligned. But we find that the global nematic
order parameter is 0 across the whole range of a discussed
here. The most likely reason for the absence of the orienta-
tional order is the requirement that the tiling be gapless,
which apparently introduces enough mixed contacts between
the long and the short sides of neighboring tiles to suppress
the alignment of their long axes.

C. Statistical mechanics of tilings

Because the isoperimetric polygon shapes are energy de-
generate, the equilibrium structure of the tiling is determined
by the maximum entropy principle �23,24�, which must be
applied within a consistent statistical-mechanical framework.
Such a theory has been elaborated by Edwards and co-
workers within the context of granular materials as mani-
festly nonthermal ensembles �25� but it also covers cellular
systems such as foams and tissues �26�. In this formalism,
each polygon is divided into quadrons—quadrilaterals de-
fined by a vertex, the midpoints of edges that meet at it, and
the polygon centroid �Fig. 8�b��. Given that the number of
independent degrees of freedom matches the number of
quadrons and that the sum of quadron areas is the total tiling
area, which is the 2D cellular analog of the conventional
Hamiltonian, one is led to infer that the quadrons are the

elementary quasiparticles of a tiling �26,27�, their areas
a1 ,a2 , . . . being the independent degrees of freedom.

The statistical-mechanical state of a tiling is encoded in
the density of quadron areas 	�a1 ,a2 , . . .�. Were the quad-
rons uncoupled, 	�a1 ,a2 , . . .� would be a product of identical
single-quadron factors: 	�a1 ,a2 , . . .�= p�a1�p�a2�. . . But this
is not the case: quadrons must tile the plane and those be-
longing to the same polygon must satisfy the fixed-area and
fixed-perimeter constraints, which makes them strongly cor-
related. As a result, a detailed analysis of their entropy is
fairly complicated. Here we estimate it using Gibbs formula
S=−
�p̃�aq�ln p̃�aq�daq, where p̃�aq� is the averaged projec-
tion of 	�a1 ,a2 , . . .� onto the single-quadron phase spaces
�shortly the probability density function �PDF�� and 
 is the
analog of the Boltzmann constant.

The PDFs of our tilings �shown in Fig. 8�a�� are right-
skewed and the location of their peak increases with polygon
reduced area a; the distribution is narrow at large values of a
but broadens as a is decreased. Virtually all details of the
PDFs are described by the gamma distribution �28,29�:
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tion �solid curves� except for the right tail, which is suppressed by
the fixed-area constraint that each polygon must satisfy. The gamma
distribution shape parameter k, which increases with polygon re-
duced area a, is an estimate of the number of quadrons in correla-
tion clusters. �b� Quadrons, the independent degrees of freedom in a
two-dimensional �2D� cellular network, are convex quadrilaterals
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centroid. �c� The Gibbs entropy of the equilibrium tiling is a de-
creasing function of a and bears no obvious signature of the onset
of the robust disordered phase and the disordered-hexagonal transi-
tion, suggesting that they are continuous. Inset: at the beginning of
the simulation run, the entropy increases until the initial hexagonal
state reaches equilibrium after a few 1000 steps. Compared here are
the entropies of an a=0.81 tiling in a box containing 400 and 1600
polygons �black and gray curve, respectively� to show that finite-
size effects are negligible in a system of �100 tiles.
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p�k,�aq
,aq� =
k

�aq
��k�
� kaq

�aq

�k−1

exp�−
kaq

�aq

� , �4�

where aq is the quadron area and �aq
 is its ensemble aver-
age, k is the shape parameter, and ��k� is the gamma func-
tion. The fit is almost perfect at all values of a, the only
systematic discrepancy being the large-aq tail, which is sup-
pressed by the fixed-area constraint imposed on each poly-
gon. The shape parameter depends strongly on polygon re-
duced area increasing from k�7.3 at a=0.70 to k�76.4 at
a=0.88. The PDFs disclose valuable insight into the correla-
tions within the tiling. Recall that for integer values of k,
p�k , �aq
 ,aq� is the aggregate distribution of the sum of k
exponentially distributed independent random variables of
identical means �28�—in our case, the areas of quadrons,
which obey the Maxwell-Boltzmann distribution �27�. If we
imagine that the tiling consists of quadron clusters just big
enough to satisfy both local and global constraints, then
these clusters reproduce all the statistics of an infinite system
including the long-range features. Thus the shape parameter
k extracted from the PDFs can be interpreted as the number
of quadrons in these clusters and the cluster radius,
�k�aq
 /�, measures the range of correlations. In the strongly
disordered phase with a=0.70 where k�7.3, each quadron is
strongly correlated only with its nearest and next-nearest
neighbors �consistent with the absence of long-range nematic
order mentioned above�, whereas in the hexagonal phase at
a=0.88 the clusters include about 76.4 quadrons, i.e., �13
tiles.

Figure 8 also shows the Gibbs entropy of the tilings as a
function of polygon reduced area. The entropy was calcu-
lated by approximating the integral by a sum over all bins of
the histograms of the PDFs, S=−
�ipi ln pi. As expected,
entropy is a decreasing function of a. However, it bears no
clear signature of the onset of robust disordered phase and
the disordered-hexagonal phase transitions, which agrees
with the continuous dependence of the structural features of

tilings on polygon reduced area and implies that the transi-
tions are second order. This is plausible yet we cannot rule
out the possibility that a more refined evaluation of entropy
that includes the quadron-quadron correlations in full may
depart somewhat from these results and we will address this
point in the future.

IV. CONCLUSIONS

The good agreement of our theoretical entropy-
maximizing tilings with those observed in simple epithelia
suggests that these tissues develop by passing through a se-
quence of quasiequilibrium states. This view represents an
alternative to theories of epithelial structure based on cell
proliferation �10,11� and it generalizes their findings al-
though it relies on fewer assumptions and parameters. An-
other important feature of the proposed model is that it
singles out the tile reduced area as the only quantity that
controls the structure of the tilings. Given that the reduced
area is a purely geometric and aggregate parameter of the
underlying biomechanics, the various physiologically rel-
evant physical descriptions of epithelia should all produce
the same structure as long as they are characterized by iden-
tical effective cell reduced area. Thus the model presented
here can be regarded as a step toward the mechanisms of
universality that is observed in two-dimensional cellular
structures.
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